SALOME-CŒUR : une plate-forme pour des études neutroniques à EDF

Hadrien Leroyer, Renaud Barate

27 novembre 2014
Journée des Utilisateurs SALOME
ENSTA - Saclay
Summary

1. WHAT IS SALOME-CŒUR ?

2. USES OF SALOME-CŒUR FOR NEUTRONIC STUDIES

3. DEMONSTRATION OF SALOME-CŒUR
Summary

1. WHAT IS SALOME-CŒUR ?
2. USES OF SALOME-CŒUR FOR NEUTRONIC STUDIES
3. DEMONSTRATION OF SALOME-CŒUR
ANDROMEDE: EDF’s new core calculation chain

- The core calculation chain:
 - Performs **operation** studies
 - Optimal core loading patterns research
 - Key safety parameters calculations for those loading patterns
 - Vessel Fluence computation (for plant life extension for example)
 - Residual power and burnup computations for fuel cycle issues
 - Performs **design** studies
 - New fuel managements
 - New reactor types
 - Calculation methodologies improvements

- From CASSIOPEE (the operating core calculation chain)…
 … to ANDROMEDE (the future core calculation chain)

- **ANDROMEDE** will be used for the operation
 of the 58 PWR’s french fleet as of 2019
 - Assembly calculations performed with APOLLO2 (CEA)
 - Core calculations performed with COCAGNE (EDF)

© 2014 EDF. No partial distribution of information from this document and no changes are permitted. Reference to the http://www.salome-platform.org is mandatory when distributed or referenced.
Salome-Cœur: the needs

- The goal of a neutronic core code (COCAGNE for instance) is to give an accurate and fast resolution of the neutronic flux within a core.

- Reactor physicists share with other fields the generic needs for:
 - **Post-processing**: results visualization
 - **Calculation management**: supervision and distribution
 - **Uncertainty propagation, data assimilation**

- The SALOME platform aims at answering these generic needs.

- **SALOME-CŒUR** packages the core code COCAGNE and generic numerical simulation modules of the SALOME platform.
Salome-Cœur: a specific platform for neutronic services

- **Salome-Core** is a platform dedicated to neutronic studies. It packages:
 - The Salome modules required for neutronic purposes
 - YACS, JOBMANAGER, PARAMETRIC
 - PARAVIS
 - ADAO, OpenTURNS
 - The core code COCAGNE
 - Several services have been added to the platform
 - Nuclear libraries management
 - COCAGNE studies management
 - Results post-processing
Summary

1. WHAT IS SALOME-CŒUR ?

2. USES OF SALOME-CŒUR FOR NEUTRONIC STUDIES

3. DEMONSTRATION OF SALOME-CŒUR
Meshes for APOLO2-MoC calculations

- **Goal:** mesh 2D PWR assemblies up to 2D cores for APOLO2 calculations
 - Solution based on the GEOM module of the SALOME platform
 - It is necessary to have good performances for the core meshes

- **Example on:**
 - the mesh of 1/8th of a PWR assembly
 - For cross-section libraries generation
 - A few seconds for less than one thousand areas
 - the mesh of 1/8th of a 1450 MW PWR core
 - For core calculations V&V
 - More than 200 000 areas
 - Needs the mesh of the « reflector » area
 - Less than one hour of mesh computation
 - Excellent agreement between the APOLO2 calculation and stochastic (TRIPOLI4) calculations

- **Easy visual verification of the region / medium association**
Energy mesh optimization for core calculations

- **Goal**: find an appropriate energy mesh for COCAGNE core calculations
 - A few groups (less than ten) from a 26-group energy mesh
 - For a target precision of less than 1% pin power discrepancy on core calculations versus calculation references
 - The less energy groups, the better for core calculation performances
 - Solution based on calculation supervision and distribution of core calculations (YACS and JOBMANAGER modules of Salome)
 - For a few energy groups, we can try every energy mesh (53,130 meshes for 6 energy groups within 26)
 - For more energy groups meshes, we cannot test every possible mesh (more than 4 million calculations needed for a 12-groups energy mesh)
 ⇒ We use a heuristic optimisation algorithm (ant colony)
Reflector constants generation with data assimilation

- **Goal:** generate 2D radial sets of reflector cross-sections in order to improve the accuracy of the power distribution and of control rods worth

- Solution based on the ADAO (Data Assimilation) module of Salome

- Data assimilation of a reference calculation

Efficient results visualization in neutronic studies

- **Goal**: provide an efficient visualization tool for neutronic studies
 - Solution based on the PARAVIS module of the SALOME platform
 - Every post-treatment can be performed with Graphic or Text (python) User Interface

Comparison of production rates between
- 2D APOLLO2 calculation (deterministic reference)
- 2D COCAGNE homogeneous per pin diffusion calculation on a beginning of life 1450 MWe reactor core loading pattern.
Summary

1. WHAT IS SALOME-CŒUR?

2. USES OF SALOME-CŒUR FOR NEUTRONIC STUDIES

3. DEMONSTRATION OF SALOME-CŒUR
Thank you!

Any questions?