Post-processing: coming next in SALOME

Cédric Aguerre – EDF Lab Paris-Saclay
Adrien Bruneton – CEA Saclay
Clarisse Genrault – CEA Saclay

SALOME User Day 2016
EDF Lab Paris-Saclay

December 9th 2016
AGENDA

1. MEDCALC
 A FIRST LEVEL ACCESS TO PROCESSING AND VISUALIZATION FEATURES OF MESHES AND FIELDS IN SALOME

2. CURVEPLOT
 HIGH LEVEL MATPLOTLIB ACCESS INTO SALOME
MEDCALC? A WORK IN PROGRESS

- Load, process and visualize meshes and fields from the same SALOME module
 - Integrate PARAVIS viewers w/o exposing the full ParaView GUI
 - Take advantage of the power of MEDCoupling and PARAVIS combination
 - Provides arithmetic functions on fields

« Easy to use »
- GUI exposing essential functions with PARAVIS look and feel
- A dedicated Python API: you can dump!

Finally, need advanced operations?
- Switch to PARAVIS in a second!
- The pipeline is already there!
MEDCALC: PYTHON SAMPLE

```python
>>> source_id = medcalc.LoadDataSource('/local00/home/F62173/testfiles/Demo_2.med')

>>> presentation_id = medcalc.MakeMeshView(medcalc.GetFirstMeshFromDataSource(source_id),
                                         viewMode=MEDCALC.VIEW_MODE_NEW_LAYOUT)

>>> presentation_id = medcalc.MakeScalarMap(accessField(80),
                                           viewMode=MEDCALC.VIEW_MODE_OVERLAP)

>>> presentation_id = medcalc.MakeSlices(accessField(80),
                                        viewMode=MEDCALC.VIEW_MODE_SPLIT_VIEW)

>>> params = medcalc.GetSlicesParameters(presentation_id)
>>> params.orientation = MEDCALC.SLICE_NORMAL_TO_Z
>>> params.nbSlices = 5
>>> medcalc.UpdateSlices(22, params)
```

Each GUI action triggers a Python function call
MEDCALC: PRESENTATIONS
MEDCALC! THERE IS WORK TO BE DONE!

- Still a prototype to be beta-tested (SALOME 8.2)
 - Presentations with minimal settings
 - Modes and animations
 - Memory-passed objects
 - ParaView pipeline – switch to PARAVIS
 - GUI and scripting

- Roadmap 2017
 - Concept validation thanks to user feedback
 - Dataspace / workspace interaction
 - MEDCoupling visibility enhancement
CURVEPLOT
Context
- One of the simplest post-treatment: plotting a 2D curve
 - Pression over time
 - Convergence rate over iterations …

Some history
- At CEA, several business projects use the “old” C++ Plot2D, based on Qwt
- Problem: some divergence/forks in the code! Difficult to maintain.
- From recent SALOME versions, we benefit from the de-facto integration of matplotlib
 - matplotlib provides an easy to manipulate API and most wanted services
Main needs around a plotting tool

- Obviously, plotting 2D curves!

- No 3D: ParaVis is already there! And MED visualization is almost ready too.

- Curve related functionalities
 - Overlapping curves
 - Various representation modes (log, color, etc …)

- Why not use Paraview’s capabilities?
 - Not user-friendly enough for business module developer
 - Too heavy: requires ParaView loading!
 - Harder to interface with custom file formats (XML, .data, …)

Start minimal and grow only if needed! (similar to MEDCalc)
IMPLEMENTATION & API

Implementation

- Full Python (like *matplotlib*), with PyQt4 backend
 - With a C++ wrapping (using internal SALOME interpreter)

- Public API does not expose MVC design. Only simple commands
 - AddCurve, DeleteCurve
 - AddPlotSet, DeletePlotSet
 - SetCurveMarker, SetXLog, SetCurveLabel

- Main parameters: unique curve identifier (=an integer), and a unique plot set identifier

- Testing part: ~45 unit tests with screenshot comparison
SOME SCREENSHOTS (1/2)

Illustrative standalone application
SOME SCREENSHOTS (2/2)
Conclusion

- Simple interface to most commonly requested plotting facilities
- *matplotlib* completely encapsulated
- New functionalities: finer handling of curves (changing colors, markers, etc …)

On-going work

- Have a full dedicated SALOME module using the tool
 - Loading files in a table, etc …
 - Potentially create/modify columns, using PANDAS for example
 - And obviously plot the data loaded this way

- Major expected improvements
 - Double Y axis (was in former Plot2D and is needed at CEA)
 - Performance optimization: not as efficient as pure *matplotlib* yet